

Why the Higgs is not the Standard Model Higgs

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Santander, 02/2020

- The Standard Model and its Higgs
- Why the SM is not enough
- SUSY comes to rescue
- Is SUSY dead?
- Conclusions

1. The Standard Model and its Higgs

Standard Model (SM) of the electroweak and strong interaction

SM: Quantum field theory \Rightarrow interaction: exchange of field quanta

Construction principle of the SM: gauge invariance

Example: Quantum electro-dynamics (QED)

field quanta: photon A_{μ}

 \mathcal{L}_{QED} invariant under gauge transformation:

$$\Psi \to e^{i e \lambda(x)} \Psi$$
, $A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda(x)$

mass term for photon: $m^2 A^\mu A_\mu$ not gauge invariant $\Rightarrow A_\mu$ is massless gauge field

Current status of knowledge: the Standard Model (SM)

 \Rightarrow all particles experimentally seen (as of 2011)

Current status of knowledge: the Standard Model (SM)

- \Rightarrow all particles experimentally seen (as of 2011)
- ⇒ but it predicts massless gauge bosons . . .

Problem:

Gauge fields Z, W^+ , W^- are massive

explicite mass terms in the Lagrangian \Leftrightarrow breaking of gauge invariance

Solution: Higgs mechanism

scalar field postulated, mass terms from coupling to Higgs field

Higgs sector in the Standard Model:

Scalar SU(2) doublet:
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Higgs potential:

$$V(\phi) = \mu^2 \left| \Phi^{\dagger} \Phi \right| + \lambda \left| \Phi^{\dagger} \Phi \right|^2, \quad \lambda > 0$$

 μ^2 < 0: Spontaneous symmetry breaking

minimum of potential at
$$|\langle \Phi_0 \rangle| = \sqrt{\frac{-\mu^2}{2 \, \lambda}} \equiv \frac{v}{\sqrt{2}}$$

$$\langle \Phi_0 \rangle | = \sqrt{\frac{-\mu^2}{2\lambda}} \equiv$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$$
 (unitary gauge)

H: elementary scalar field, Higgs boson

Lagrange density:

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - g_d \bar{Q}_L \Phi d_R - g_u \bar{Q}_L \Phi_c u_R - V(\Phi)$$

with

$$iD_{\mu} = i\partial_{\mu} - g_{2}\vec{I}\vec{W}_{\mu} - g_{1}YB_{\mu}$$

$$\Phi_{c} = i\sigma_{2}\Phi^{*} \qquad Q_{L} \sim \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \ \Phi \sim \begin{pmatrix} 0 \\ v \end{pmatrix}, \ \Phi_{c} \sim \begin{pmatrix} v \\ 0 \end{pmatrix}$$

Gauge invariant coupling to gauge fields

⇒ mass terms for gauge bosons and fermions

1.) $VV\Phi\Phi$ coupling:

$$\frac{1}{q^2} \to \frac{1}{q^2} + \sum_{i} \frac{1}{q^2} \left[\left(\frac{gv}{\sqrt{2}} \right)^2 \frac{1}{q^2} \right]^j = \frac{1}{q^2 - M^2} : M^2 = g^2 \frac{v^2}{2} \implies M \propto g$$

2.) fermion mass terms: Yukawa couplings:

$$f \longrightarrow + \longrightarrow + \longrightarrow + \cdots$$

$$\frac{1}{\cancel{q}} \rightarrow \frac{1}{\cancel{q}} + \sum_{i} \frac{1}{\cancel{q}} \left[\frac{g_f v}{\sqrt{2}} \frac{1}{\cancel{q}} \right]^j = \frac{1}{\cancel{q} - m_f} : m_f = g_f \frac{v}{\sqrt{2}} \quad \Rightarrow m_f \propto g_f$$

3.) mass of the Higgs boson: self coupling

$$\lambda = M_H^2/v^2$$

$$M_H = v\sqrt{\lambda}$$
 free parameter

→ last unknown (now measured) parameter of the SM

3.) mass of the Higgs boson: self coupling

$$\lambda = M_H^2/v^2$$

$$M_H = v\sqrt{\lambda}$$
 free parameter

→ last unknown (now measured) parameter of the SM

 \Rightarrow establish Higgs mechanism \equiv find the Higgs \oplus measure its couplings

3.) mass of the Higgs boson: self coupling

$$\lambda = M_H^2/v^2$$

$$M_H = v\sqrt{\lambda}$$
 free parameter

→ last unknown (now measured) parameter of the SM

 \Rightarrow establish Higgs mechanism \equiv find the Higgs \oplus measure its couplings

Q1: Como se puede medir los acoplamientos?

Q2: Que mas hay que medir/comprobar?

Another effect of the Higgs field:

Scattering of longitudinal W bosons: $W_LW_L \rightarrow W_LW_L$

$$M_V = \begin{pmatrix} W \\ \gamma, Z \end{pmatrix} + \begin{pmatrix} Y \\ \gamma, Z \end{pmatrix} + \begin{pmatrix} G \\ \gamma, Z \end{pmatrix} = -g^2 \frac{E^2}{M_W^2} + \mathcal{O}(1)$$
for $E \to \infty$

Another effect of the Higgs field:

Scattering of longitudinal W bosons: $W_LW_L \rightarrow W_LW_L$

$$\mathcal{M}_{V} = \bigvee_{\gamma, Z} \mathcal{M} + \bigvee_{\gamma, Z} \mathcal{M} + \bigvee_{\gamma, Z} \mathcal{M} = -g^{2} \frac{E^{2}}{M_{W}^{2}} + \mathcal{O}(1)$$
for $E \to \infty$

Q: porque es eso peligroso?

Another effect of the Higgs field:

Scattering of longitudinal W bosons: $W_LW_L \rightarrow W_LW_L$

$$M_V = \begin{pmatrix} W \\ \gamma, Z \end{pmatrix} + \begin{pmatrix} Y \\ \gamma, Z \end{pmatrix} + \begin{pmatrix} G \\ M_W^2 \end{pmatrix} + \mathcal{O}(1)$$

$$W = \begin{pmatrix} W \\ \gamma, Z \end{pmatrix} + \begin{pmatrix} G \\ M_W^2 \end{pmatrix} + \mathcal{O}(1)$$
for $E \to \infty$

⇒ violation of unitarity

Contribution of a scalar particle with couplings prop. to the mass:

$$\mathcal{M}_{S} = \begin{array}{c} W \\ + W \end{array} \qquad + \begin{array}{c} W \\ + W \end{array} \qquad = g_{WWH}^{2} \frac{E^{2}}{M_{W}^{4}} + \mathcal{O}(1) \\ \text{for } E \to \infty \end{array}$$

$$\mathcal{M}_{tot} = \mathcal{M}_{V} + \mathcal{M}_{S} = \frac{E^{2}}{M_{W}^{4}} \left(g_{WWH}^{2} - g^{2} M_{W}^{2}\right) + \dots$$

⇒ compensation of terms with bad high-energy behavior for

$$g_{WWH} = g M_W$$

Cross section with/without the Higgs:

[taken from M. Schumacher '12 / C. Englert]

The physics world changed on 04.07.2012:

We have a discovery!

We have a discovery!

But what is it?

Q: Is it a Higgs boson?

Q: Is it the Higgs boson (i.e. of the SM)?

Q: Is it an MSSM Higgs boson?

Q: Is it a Higgs boson of a different model?

Q: Is it an impostor?

We have a discovery!

But what is it?

Q: Is it a Higgs boson?

Q: Is it the Higgs boson (i.e. of the SM)?

Q: Is it an MSSM Higgs boson?

Q: Is it a Higgs boson of a different model?

Q: Is it an impostor?

How can we decide?

A: Measure all its characteristics

A: Compare to the predictions of the various models

A: search for additional Higgs bosons above and below 125 GeV

We have a discovery!

But what is it?

Q: Is it a Higgs boson?

Q: Is it the Higgs boson (i.e. of the SM)?

Q: Is it an MSSM Higgs boson?

Q: Is it a Higgs boson of a different model?

Q: Is it an impostor?

How can we decide?

A: Measure all its characteristics

A: Compare to the predictions of the various models

A: search for additional Higgs bosons above and below 125 GeV

⇒ Needed: precise predictions for Higgs-Boson properties!

Total width:

sum over all decay widths

$$\Gamma_{H,\text{tot}} := \sum_{\text{dd}'} \Gamma(H \to \text{dd}')$$

$$= \Gamma(H \to t\bar{t}) + \Gamma(H \to b\bar{b}) + \Gamma(H \to c\bar{c}) + \dots$$

$$+ \Gamma(H \to \tau^{+}\tau^{-}) + \Gamma(H \to \mu^{+}\mu^{-}) + \dots$$

$$+ \Gamma(H \to WW^{(*)}) + \Gamma(H \to ZZ^{(*)}) + \Gamma(H \to \gamma\gamma) + \dots$$

$$+ \dots$$

Branching ratio:

probability that a particle decays to a certain final state

$$\mathsf{BR}(H o \mathsf{dd'}) := \frac{\Gamma(H o \mathsf{dd'})}{\Gamma_{H,\mathsf{tot}}}$$

Latest theory predictions for the SM Higgs: branching ratios [LHC Higgs XS WG '13]

Latest theory predictions for the SM Higgs: branching ratios [LHC Higgs XS WG '13]

Higgs production modes at the LHC:

Gluon Gluon Fusion

$$pp \rightarrow gg \rightarrow H$$

W/Z Fusion

$$pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + H$$

Higgs-strahlung

$$pp \to W^*/Z^* \to W/Z + H$$

ullet Associated production with $tar{t}$

$$pp \rightarrow t\bar{t} + H$$

Latest theory predictions for the SM Higgs: LHC production XS

[LHC Higgs XS WG '12]

2. Why the SM is not Enough

Fact I:

We have a discovery!

2. Why the SM is not Enough

Fact I:

We have an SM-like discovery!

Fact II:

The SM cannot be the ultimate theory!

Some facts:

- 1. gravity is not included
- 2. the hierarchy problem
- 3. no unification of the three forces
- 4. Dark Matter is not included
- 5. Baryon Asymmetry of the Universe cannot be explained
- 6. neutrino masses are not included
- 7. anomalous magnetic moment of the muon shows a $\sim 4 \sigma$ discrepancy

Fact 2: the Hierarchy problem

Mass is what determines the properties of the free propagation of a particle

Free propagation: H = H = H = I inverse propagator: $i(p^2 - M_H^2)$

Loop corrections: $H \longrightarrow H \longrightarrow H$ inverse propagator: $i(p^2 - M_H^2 + \Sigma_H^f)$

QM: integration over all possible loop momenta k dimensional analysis:

$$\Sigma_H^f \sim N_f \lambda_f^2 \int d^4k \left(\frac{1}{k^2 - m_f^2} + \frac{2m_f^2}{(k^2 - m_f^2)^2} \right)$$

for
$$\Lambda \to \infty$$
: $\Sigma_H^f \sim N_f \, \lambda_f^2 \left(\underbrace{\int \frac{d^4k}{k^2}}_{\sim \Lambda^2} + 2m_{\rm f}^2 \underbrace{\int \frac{dk}{k}}_{\sim \ln \Lambda} \right)$

⇒ quadratically divergent!

For $\Lambda = M_{\text{Pl}}$:

$$\Sigma_H^f pprox \delta M_H^2 \sim M_{
m Pl}^2 \quad \Rightarrow \quad \delta M_H^2 pprox 10^{30}\,M_H^2$$
 (for $M_H \lesssim 1$ TeV)

- no additional symmetry for $M_H = 0$
- no protection against large corrections

→ Hierarchy problem is instability of small Higgs mass to large corrections in a theory with a large mass scale in addition to the weak scale

E.g.: Grand Unified Theory (GUT): $\delta M_H^2 \approx M_{\rm GUT}^2$

Note however: there is another fine-tuning problem in nature, for which we have no clue so far — cosmological constant

Fact 3: Cold Dark Matter

Cold Dark Matter exists:

\Rightarrow It all fits together

$$\Omega_{\mathsf{tot}} \approx 1$$

$$\Omega_M h^2 = 0.135^{+0.008}_{-0.009}$$

$$\Omega_B h^2 = 0.0224 \pm 0.0009$$

$$\Omega_{\chi}h^2 = 0.112 \pm 0.018$$

$$\Omega_{\Lambda} \approx 0.73$$

 $\Omega_{\chi} \Rightarrow \text{dark matter}$

 $\Omega_{\Lambda} \Rightarrow \text{dark energy} \dots$

 \Rightarrow no SM candidate!

Fact 6: The anomalous magnetic moment of the muon

$$a_{\mu} \equiv (g-2)_{\mu}/2$$

Overview about the current experimental and SM (theory) result:

[A. Keshavarzia, D. Nomura, T. Teubner '18]

$$a_{\mu}^{\rm exp} - a_{\mu}^{\rm theo,SM} \approx (27.05 \pm 7.26) \times 10^{-10} : 3.7 \, \sigma$$

The $(g-2)_{\mu}$ experiment:

Coupling of muon to magnetic field : $\mu - \mu - \gamma$ coupling

$$\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i}{2m_{\mu}} \sigma^{\mu\nu} q_{\nu} F_2(q^2) \right] u(p) A_{\mu} \qquad F_2(0) = a_{\mu}$$

Current status of $(g-2)_{\mu}$:

Experiment:

- 2001 2006: very stable development
- final error: 6×10^{-10} , still statistically dominated

Theory:

– the light-by-light contribution:

2002: sign error discovered; since then stabilized

– the hadronic vacuum contribution:

problems with the τ data \Rightarrow hardly used anymore

'direct' e^+e^- data:

from CMD-II, SND, KLOE (radiative return)

 \Rightarrow agree quite well (also with old e^+e^- data)

Fact I & II:

We have a discovery!

The SM cannot be the ultimate theory!

Conclusion: It cannot be "the SM Higgs"!

Fact I & II:

We have a discovery!

The SM cannot be the ultimate theory!

Conclusion: It cannot be "the SM Higgs"!

Q: Does the BSM physics have any (relevant) impact on the Higgs?

Q': Which model?

Fact I & II:

We have a discovery!

The SM cannot be the ultimate theory!

Conclusion: It cannot be "the SM Higgs"!

Q: Does the BSM physics have any (relevant) impact on the Higgs?

Q': Which model?

A1: check changed properties

A2: check for additional Higgs bosons

A2': check for additional Higgs bosons above and below 125 GeV

Models	with	extended	Higgs	sectors:

Models with extended Higgs sectors:

Q: Conoceis un modelo BSM? :-)

Models with extended Higgs sectors:

- 1. SM with addional Higgs singlet
- 2. Two Higgs Doublet Model (THDM): type I, II, III, IV
- 3. Minimal Supersymmetric Standard Model (MSSM)
- 4. MSSM with one extra singlet (NMSSM)
- 5. MSSM with more extra singlets
- 6. SM/MSSM with Higgs triplets
- 7. . . .
- ⇒ BSM models without extended Higgs sectors still have changed Higgs properties (quantum corrections!)
- ⇒ SM + vector-like fermions, Higgs portal, Higgs-radion mixing, . . .

Which model should we focus on?							

Which model should we focus on? \Rightarrow experimental data as guidance!

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Which model should we focus on? \Rightarrow experimental data as guidance!

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Which model should we focus on? \Rightarrow experimental data as guidance!

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)
- ⇒ good motivation to look at SUSY! :-)

3. Supersymmetry (SUSY) comes to rescue

```
\begin{array}{ccc} \mathsf{Bosons} & \leftrightarrow & \mathsf{Fermions} \\ Q & |\mathsf{Fermion}\rangle & \to & |\mathsf{Boson}\rangle \\ Q & |\mathsf{Boson}\rangle & \to & |\mathsf{Fermion}\rangle \end{array}
```

Simplified examples:

$$egin{array}{cccc} Q & |\mathsf{top}, & t
angle &
ightarrow & |\mathsf{scalar top}, & ilde{t}
angle \ Q & |\mathsf{gluon}, & g
angle &
ightarrow & |\mathsf{gluino}, & ilde{g}
angle \end{array}$$

⇒ each SM multiplet is enlarged to its double size

Unbroken SUSY: All particles in a multiplet have the same mass

Reality: $m_e \neq m_{\tilde{e}} \Rightarrow SUSY$ is broken . . .

... via soft SUSY-breaking terms in the Lagrangian (added by hand)

SUSY particles are made heavy: $M_{\text{SUSY}} = \mathcal{O}(1 \text{ TeV})$

⇒ each SM multiplet is enlarged to its double size

1. SM spin 0 bosons:

(spin 0) multiplet
$$\rightarrow$$
 (spin 0, spin $\frac{1}{2}$) multiplet $(\rightarrow LH\chi SF)$ (left-handed chiral super field)

2. SM spin $\frac{1}{2}$ fermions:

$$(\text{spin } \frac{1}{2}) \text{ multiplet } \rightarrow (\text{spin } 0, \text{ spin } \frac{1}{2}) \text{ multiplet } (\rightarrow \text{LH}\chi \text{SF})$$

3. SM spin 1 bosons:

(spin 1) multiplet
$$\rightarrow$$
 (spin $\frac{1}{2}$, spin 1) multiplet (\rightarrow Vector SF)

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u,d,c,s,t,b \end{bmatrix}_{L,R} \quad \begin{bmatrix} e,\mu,\tau \end{bmatrix}_{L,R} \quad \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } \frac{1}{2}$$

$$\begin{bmatrix} \tilde{u},\tilde{d},\tilde{c},\tilde{s},\tilde{t},\tilde{b} \end{bmatrix}_{L,R} \quad \begin{bmatrix} \tilde{e},\tilde{\mu},\tilde{\tau} \end{bmatrix}_{L,R} \quad \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin 0}$$

$$g \quad \underline{W}^{\pm},\underline{H}^{\pm} \quad \underline{\gamma},Z,\underline{H}^{0}_{1},\underline{H}^{0}_{2} \qquad \text{Spin 1 / Spin 0}$$

$$\tilde{g} \quad \tilde{\chi}^{\pm}_{1,2} \quad \tilde{\chi}^{0}_{1,2,3,4} \qquad \text{Spin } \frac{1}{2}$$

Enlarged Higgs sector: Two Higgs doublets \Rightarrow 5 Higgs bosons

⇒ lightest MSSM Higgs-boson is SM-like!

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u,d,c,s,t,b \end{bmatrix}_{L,R} \quad \begin{bmatrix} e,\mu,\tau \end{bmatrix}_{L,R} \quad \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } \frac{1}{2}$$

$$\begin{bmatrix} \tilde{u},\tilde{d},\tilde{c},\tilde{s},\tilde{t},\tilde{b} \end{bmatrix}_{L,R} \quad \begin{bmatrix} \tilde{e},\tilde{\mu},\tilde{\tau} \end{bmatrix}_{L,R} \quad \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin 0}$$

$$g \quad \underline{W}^{\pm},\underline{H}^{\pm} \quad \underline{\gamma},Z,\underline{H}^{0}_{1},\underline{H}^{0}_{2} \qquad \text{Spin 1 / Spin 0}$$

$$\tilde{g} \quad \tilde{\chi}^{\pm}_{1,2} \quad \tilde{\chi}^{0}_{1,2,3,4} \qquad \text{Spin } \frac{1}{2}$$

Enlarged Higgs sector: Two Higgs doublets \Rightarrow 5 Higgs bosons

⇒ lightest MSSM Higgs-boson is SM-like!

Q: Porque 5 bosones de Higgs?

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

Problem in the MSSM: more than 100 free parameters

Nobody(?) believes that a model describing nature has so many free parameters!

⇒ to be discussed later?!

Fact 2: the hierarchy problem

Symmetry between fermions and bosons

$$Q|{\rm boson}\rangle = |{\rm fermion}\rangle$$

 $Q|{\rm fermion}\rangle = |{\rm boson}\rangle$

Effectively: SM particles have SUSY partners (e.g. $f_{L,R} \to \tilde{f}_{L,R}$)

SUSY: additional contributions from scalar fields:

H
$$\tilde{f}_{L,R}$$
 H
 $\tilde{f}_{L,R}$
 $\tilde{f}_{L,R}$
 $\tilde{f}_{L,R}$

$$\Sigma_H^{\tilde{f}} \sim N_{\tilde{f}} \, \lambda_{\tilde{f}}^2 \int d^4k \left(\frac{1}{k^2 - m_{\tilde{f}_L}^2} + \frac{1}{k^2 - m_{\tilde{f}_R}^2} \right) + \text{ terms without quadratic div.}$$

for
$$\Lambda \to \infty$$
: $\Sigma_H^{\tilde{f}} \sim N_{\tilde{f}} \; \lambda_{\tilde{f}}^2 \; \Lambda^2$

⇒ quadratic divergences cancel for

$$N_{\tilde{f}_L} = N_{\tilde{f}_R} = N_f$$

$$\lambda_{\tilde{f}}^2 = \lambda_f^2$$

complete correction vanishes if furthermore

$$m_{\tilde{f}} = m_f$$

Soft SUSY breaking:
$$m_{\tilde{f}}^2 = m_f^2 + \Delta^2$$
, $\lambda_{\tilde{f}}^2 = \lambda_f^2$
$$\Rightarrow \Sigma_H^{f+\tilde{f}} \sim N_f \; \lambda_f^2 \; \Delta^2 + \dots$$

- ⇒ correction stays acceptably small if mass splitting is of weak scale
- ⇒ realized if mass scale of SUSY partners

$$M_{\rm SUSY} \lesssim {\rm few \, TeV}$$

⇒ SUSY at TeV scale provides attractive solution of hierarchy problem

Fact 3: Cold Dark Matter: perfect candidate: $\tilde{\chi}_1^0$

Dark Matter in the CMSSM parameter space:

schematic picture

$$(0.1 \le \Omega_{\chi} h^2 \le 0.3)$$

[K. Olive et al. '02]

Despite its simplicity CMSSM fulfils all experimental bounds

Four mechanisms for "good" $\langle \sigma v \rangle$:

- Bulk
- Stau coannihilation
- Higgs-pole annihilation
- Focus-Point

 \mathbf{m}_0

Fact 4: Unification of forces

[Amaldi, de Boer, Fürstenau '92]

Unification of the Coupling Constants in the SM and the minimal MSSM

Fact 6: The anomalous magnetic moment of the muon

SUSY can easily explain the deviation:

Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Enhancement factor as compared to SM:

$$\mu - \tilde{\chi}_i^{\pm} - \tilde{\nu}_{\mu}$$
 : $\sim m_{\mu} \tan eta$

$$\mu - \tilde{\chi}_i^0 - \tilde{\mu}_a$$
 : $\sim m_{\mu} \tan \beta$

SM, EW 1L:
$$\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_W^2}$$

SM, EW 1L:
$$\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_W^2}$$
 MSSM, 1L: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \times \tan \beta$

SUSY corrections at 1L:

$$a_{\mu}^{\text{SUSY,1L}} \approx 13 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{\text{SUSY}}}\right)^2 \tan \beta \operatorname{sign}(\mu)$$

 $M_{\rm SUSY} (= m_{\tilde{\mu}} = m_{\tilde{\nu}} = m_{\tilde{\chi}})$: generic SUSY mass scale

$$a_{\mu}^{\text{SUSY,1L}} = (-100... + 100) \times 10^{-10}$$

 $a_{\mu}^{\text{exp}} - a_{\mu}^{\text{theo,SM}} \approx (28 \pm 8) \times 10^{-10}$

- ⇒ SUSY could easily explain the "discrepancy"
- $\Rightarrow a_{\mu}$ can provide bounds on SUSY parameter space (by requiering agreement at the 95% C.L.)

4. Is SUSY dead?

The reports of my death have been greatly exaggerated.

~ Mark Twain

⇒ But what about experimental results?

Is SUSY dead? When will I give up on SUSY?

SUSY is as dead (or alive) as ANY OTHER BSM theory

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

⁺Small-radius (large-radius) jets are denoted by the letter j (J).

SUSY is as dead	(or alive)	as ANY OTHER	BSM theory
-----------------	------------	--------------	------------

⇒ focus on the theoretically most appealing theory!

SUSY is as dead (or alive) as ANY OTHER BSM theory

- ⇒ focus on the theoretically most appealing theory!
- It is nearly inconceivable that there is no symmetry between bosons and fermions (at low or high energy?)
- SUSY is the only non-trivial extension of (the SM) gauge symmetries
- SUSY gives you coupling constant unification
- SUSY predicted correctly the top quark mass
- SUSY predicted correctly the Higgs boson mass
- SUSY predicted correctly an SM-like Higgs boson
- SUSY predicted correctly DM properties

Back to fact 6: The anomalous magnetic moment of the muon

SUSY can easily explain the deviation:

Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Enhancement factor as compared to SM:

$$\mu - \tilde{\chi}_i^{\pm} - \tilde{\nu}_{\mu} : \sim m_{\mu} \tan \beta$$

 $\mu - \tilde{\chi}_j^{0} - \tilde{\mu}_a : \sim m_{\mu} \tan \beta$

SM, EW 1L:
$$\frac{\alpha}{\pi} \, \frac{m_{\mu}^2}{M_W^2}$$

SM, EW 1L: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_W^2}$ MSSM, 1L: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \times \tan \beta$

- \Rightarrow if SUSY exists, it should explain $(g-2)_{\mu}$
- ⇒ light EW SUSY particles must exist!

Electroweak searches:

5. Conclusinos

- The Standard Model is a highly successful theory
- The SM fails to explain: gravity, hierarchy problem, unification of forces, DM, neutrino masses, $(g-2)_{\mu}$, . . .
- Many BSM models exist!
 - ⇒ Supersymmetry has the best features
 - paves the way to include gravity (string theory)
 - solves the hierarchy problem
 - unifies the forces
 - natural DM candidate
 - some models naturally include neutrino masses
 - $-(g-2)_{\mu}$ easily explained
- Experimental data: SUSY is as alive (or dead) as any other BSM theory
 but SUSY is the only theory with all the salient features!
- If SUSY exists, it should explain $(g-2)_{\mu}$ \Rightarrow light EW SUSY particles must exist! This is where to look!

